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ABSTRACT   Several choices of amino acid substitution matrices are currently available
for searching and alignment applications. These choices were evaluated using the BLAST
searching program, which is extremely sensitive to differences among matrices, and the
Prosite catalog, which lists members of hundreds of protein families. Matrices derived
directly from either sequence-based or structure-based alignments of distantly related
proteins performed much better overall than extrapolated matrices based on the Dayhoff
evolutionary model. Similar results were obtained with the FASTA searching program.
Improved performance appears to be general rather than family-specific, reflecting
improved accuracy in scoring alignments. An implementation of a multiple matrix strategy
was also tested. While no combination of three matrices performed as well as the single
best matrix, BLOSUM 62, good results were obtained using a combination of sequence-
based and structure-based matrices. This hybrid set of matrices is likely to be useful in
certain situations. Our results illustrate the importance of matrix selection and the value
of a comprehensive approach to evaluation of protein comparison tools.

INTRODUCTION
A variety of computer-based tools are in general use for comparing protein

sequences. Alignment of two sequences is typically accomplished using a dynamic
programming algorithm1. Searching of databanks is usually done using local alignment
programs such as FASTA2, BLAST3 or parallel implementations of dynamic programming
algorithms4-6. Multi-sequence alignments are carried out using a variety of strategies7-12.
For the classification of proteins into families all of the above approaches have been used,
singly or in combination, as well as alignment-based strategies specifically designed for
that task13-17. Recently, other computer-based tools have become available that do not
directly involve sequence alignment, such as structure-based alignments18, neural
network methods19,20 and indexing methods21.

Given the number of tools now available, evaluation of alternative methods for
comparing protein sequences is especially important. However, the description of a new
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method is typically accompanied by a few anecdotal examples showing how much better
the new method works than a currently popular method. A more thorough testing strategy
was used by Pearson, who evaluated database searching programs by choosing queries
from each of the 34 largest superfamilies in the NBRF-PIR annotated database22. He
concluded that the performance of FASTA at ktup=1 approaches that using a full dynamic
programming algorithm. Later, we applied a similar strategy to the empirical evaluation of
amino acid substitution matrices23. Matrices in our BLOSUM series were compared to
those in the Dayhoff mutation data matrix (MDM78)24 series by measuring the ability of
BLAST to detect members from 504 different protein groups listed in the PROSITE
catalog using a query chosen from each group. The performance of matrices in the
BLOSUM series, especially of BLOSUM 62, was found to be far superior to that of the
MDM78 matrices24, as well as to two other matrices recently introduced as replacements
for the widely-used MDM78 PAM 250 matrix25,26. These more comprehensive evaluation
strategies are clearly necessary for identifying the most effective alternatives for database
searching.

As a result of our previous tests, the fundamental importance of the choice of
substitution matrix became evident. Every sequence-based alignment program uses a
substitution matrix for scoring, and in nearly every case, one of the MDM78 matrices is the
default. In particular, the poor performance of the MDM78 PAM 250 matrix in our tests calls
into question many conclusions that have been based on the failure of a program to detect
a homolog in database search. For example, Bowie and co-workers claimed better
performance of structure-based profiles than a comparable sequence-based approach
(using MDM78 PAM 250) for detection of homologs to E. coli Crp and Rbp proteins18.
However, FASTA2 using BLOSUM 62 clearly outperforms the structure-based profile for
both of their queries (unpublished results). So, evaluations of protein comparison
programs depend upon the substitution matrix used, whether directly in providing scoring
parameters, or indirectly in drawing conclusions about relative performance.

Only recently has much attention been paid to theoretical aspects influencing the
choice of a substitution matrix. Altschul has stressed the importance of the information
content of a matrix, measured in bit units as relative entropy27. His theoretical analysis
concluded that the MDM78 PAM 250 matrix, with relative entropy less than 0.4 bit, had
insufficient information for most effective database searching. This conclusion was
confirmed in our tests, which showed that for both the MDM78 PAM and the BLOSUM
series, matrices with relative entropies of about 0.7 performed the best overall23. Altschul
also has argued in favor of using multiple matrices for searching, since no single matrix
will efficiently score all correct alignments of proteins that differ in evolutionary distance28.
His idea is that by using a set of matrices that are tailored to different evolutionary
distances, it should be possible to efficiently detect alignments that otherwise might be
missed. This advantage should offset the cost of an increased background of false
positive alignments when results from multiple searches are combined. While Altschul's
approach was illustrated for the MDM78 series ("ALL-PAM"), it is general and can be
implemented for any matrix set.

Here we present comprehensive tests of different matrices and matrix sets using
the BLAST and FASTA searching programs. The tested matrices fall into two classes.
One class was derived by extrapolation from closely-related sequences, based on the
PAM (percent accepted mutation) evolutionary model of Dayhoff and co-workers29. Of
these, the series from Jones and co-workers26 was found to be a clear improvement over
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the MDM78 series24. The other class consists of matrices derived directly from multiple
alignment data, either from sequence-based17 or from structure-based alignments30.
Matrices of this class are not based on evolutionary models. Searching performance of
the structure-based (STR) matrix approached that of the best sequence-based matrix,
BLOSUM 62. The second class of matrices was much better for detecting distant
relationships than any of the matrices based on the PAM evolutionary model. Overall
performance differences did not appear to be family-specific, but rather indicated that for
distant alignments, the extrapolated matrices are inherently less accurate, with their
accuracy improving for closer relationships. We also tested a three matrix implementation
of a multiple matrix strategy28 and found that for the best performing matrices, the costs
outweigh the benefits. However, the benefits can be increased by combining the STR
matrix with BLOSUM series matrices; this might prove to be an advantageous strategy,
for example when other information is available for distinguishing true from false positive
database matches.

METHODS
Matrix construction

The MDM78 series of matrices was constructed from the 1978 Dayhoff dataset24

using the National Center for Biotechnology Information (NCBI) PAM program version
1.0.5 (9/3/92). The matrices consisted of integers and were variably scaled to provide
more contrast in lower entropy matrices, with the scaling depending on the relative
entropy (H) of the matrix: scale = 1/n bits where n=minimum[2.0, 2.0/sqrt(H)]. So the
maximum scale was half bits (n=2) for H above .64 and third bits (n=3) for H between .64
and .25. The PAM program added columns for B, Z and X to the 20 core amino acids by
computing B pairs as the frequency-weighted average of entries for D and N pairs, Z pairs
as the frequency-weighted average of entries for Q and E pairs, and X pairs as the
frequency-weighted average of all pairs.

The JTT series of matrices was constructed from pairwise exchange data derived
from SWISS-PROT 22 using a version of the CALCPAM program (Release 2, 6/92) that
we modified to calculate relative entropy (H) and expected (E) values and to variably scale
the matrices based on relative entropy as described above. For matrices of equal relative
entropies, JTT PAM values do not correspond precisely to MDM78 PAM values. Columns
for B, Z, and X were calculated as averages of the rounded scaled scores weighted by the
SWISS-PROT 22 amino acid frequencies. The CALCPAM program and pairwise
exchange data were provided by David T. Jones26.

The GCB matrix25 was obtained along with the BLAST programs from the
anonymous ftp server at NCBI where it was called the "Gonnet" matrix.

The STR matrix was derived from the "All Classes" table of raw scores provided on
a diskette accompanying a paper by Overington and co-workers30. The table contains
79,983 pairwise substitutions. These are comparable to BLOSUM pair counts23, except
that cystine and cysteine are separated into C and J columns and rows, and a row is
provided for amino acids aligned with gaps. A scoring matrix was computed as follows: 1)
The gap row was ignored. 2) J and C were combined. 3) Scores, entropies and expected
values were computed as for the BLOSUM series. 4) The relative entropy of the matrix
was calculated as 0.92 bits and so it was scaled to half bits (Fig. 1, lower). 5) Columns for
B, Z and X were calculated as for the JTT PAM series.

The BLOSUM series of matrices was derived from the Blocks Database v. 5.0 as
previously described23, except that variable scaling and the calculation of B, Z and X
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values were implemented to conform with those features of the NCBI PAM program.
Following a suggestion of S. Altschul (personal communication), a series of

INTERVAL matrices was constructed from the Blocks Database v 5.0 using a different
method for counting pairs than was used for the BLOSUM series. For the BLOSUM
series, segments in a block that were at least x% identical were clustered and pairs were
counted between clusters. So pairs were counted only between segments less than x%
identical. For example, if x=62, then pairs were counted between segments less than 62%
identical; if x=100, then pairs were counted between segments unless they were 100%
identical. As x increased, pairs were counted between increasingly similar segments. For
INTERVAL matrices, pairs were counted between segments in a block if they were at
least x1% but not more than x2% identical in order to achieve a greater range of relative
entropies and to correspond better to specific evolutionary distances.

In each case, calculation of log-odds ratios and scaling was carried out before
rounding to give integer matrices, except for the GCB matrix which was used as provided
with the BLAST program.

As a control, we used a unitary matrix called +6/-1 which scores +6 for matches
and -1 for mismatches. These values guarantee that the expected value of the matrix is
negative, which is necessary for both the BLAST and FASTA algorithms.

Selection of queries
Groups of related protein sequences were obtained from Prosite 9.0, using the

same 560 non-redundant groups that were used by the PROTOMAT system17 to
construct the Blocks Database v. 5.0 (plus PS00574 which was inadvertently omitted from
the database). For each group, a set of true positive sequences was identified as follows:
all full-length sequences listed in PROSITE.DAT15 and marked either "T" for true positive,
"N" for false negative, or "P" for potential positive were included. Furthermore, if multiple
sequences in the group shared the same gene name (all characters in the SWISS-PROT
2231 ID before the "_" character) and most of the organism name (first three characters
after the "_"), then only the longest of these sequences was included. For the 560 groups,
there were a total of 11,255 true positive sequences.

To test the performance of the various matrices, queries for each group were
selected to be distant from most other members of its group. A second query, distant from
the first, was also selected for verification of results. For query 1, a full-length sequence
was selected from among the true positive set for each of the 560 Prosite groups. If any
of the sequences in a group were excluded from the best path by PROTOMAT, i.e. they
did not appear in the blocks for the group, the longest of the most distant of these
excluded sequences was selected. Distance was estimated from the SWISS-PROT IDs
for the sequences, where two sequences with a shorter common prefix were considered
to be more distant. For example, the common prefix of MYF3_HUMAN and
MYF4_HUMAN is MYF, and they are considered more distant from one another than
MYC_AVIM2 and MYC_AVIME with a common prefix of MYC_AVIM, whereas there is no
common prefix for HAIR_DROME and EMC_DROME. If all the sequences appeared in
the blocks for a group so that there were no excluded sequences, the longest of the most
distant of them was selected. For example, there were 63 sequences in the PS00038
group, and all of them were included in the best path for the two blocks constructed by
PROTOMAT. Twelve of these sequences had no common prefix with any other
sequence, and the longest of these twelve was DA_DROME which was selected as query
1.
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Query 1 search results were used to select query 2 from each of the 257 most
challenging groups as described below. Each query 2 was selected from among the true
positive sequences that were missed by the most matrices during the query 1 searches.
If there were multiple sequences missed by the most matrices, then the longest of the
most distant of these was chosen. For the 257 most challenging groups, there were a total
of 7,535 true positive sequences.

Searches
BLASTP3 version 1.2.9 (9/4/92) was used with default parameters of W=3 and

E=10. This version combines multiple maximum segment pairs (MSPs) for the same
sequence and calculates a correspondingly modified P-value. FASTA2 version 1.6c2 (8/
92) was used with ktup=1, gap penalties of -12 and -4 and default parameters. The
databank searched was SWISS-PROT 2231, consisting of 25,044 sequences.

BLAST searches using query 1 for each group were carried out as previously
described23, but using the updated searching programs. Each of the 560 queries was first
searched against the SWISS-PROT database using 8 different matrices; 3 from the
BLOSUM series (45, 62, 80), 3 from the MDM78 series (PAM 250, 160, 120), GCB and +6/
-1. A true positive sequence was considered "found" if it was reported by BLAST. In
addition to counting the number of true positives found, we also took note of the P-value
assigned to each true positive sequence by BLAST. All 8 matrices found all true positive
sequences for 303 of the 560 groups. Based on these results, the original 560 groups
were reduced to a smaller set of the 257 most challenging groups. BLAST searches of
query 2 for each of these most challenging groups with 18 different matrices were then
carried out, as well as searches of query 1 for all 560 groups using the 10 additional
matrices. For the MDM78, JTT and BLOSUM series, five matrices were tested. The single
GCB, STR and +6/-1 matrices were also tested. BLAST searches of query 2 for the most
challenging groups were also done with three different INTERVAL matrices.

For pairs of matrices, the results of each of the 560 BLAST searches for query 1
and the 257 BLAST searches for query 2 were compared as follows. First, the number of
the groups for which each matrix in the pair found more true positive sequences than the
other was counted. In addition, the number of groups for which each matrix had a smaller
P-value for more true positive sequences than the other was counted; two P-values were
considered equal if the absolute value of their difference was less than 10-3.

FASTA searches were done for the 257 most challenging groups with 18 different
matrices. Since FASTA does not report results based on a probability value, we collected
300 results for each search and counted a true positive sequence as "found" if it appeared
ahead of 99.5% of the presumed true negative sequences in SWISS-PROT. This
corresponds to the evaluation criteria recommended by Pearson22. So, if there were n true
positive sequences, then true positive hits had to occur among the highest-scoring
(25,044-n)*0.005 hits to be counted. On average, n was about 29. For pairs of matrices
with similar relative entropies, the number of groups for which each matrix in the pair
found more true positive sequences than the other was counted.

Searches with multiple matrices
An implementation of Altschul's multiple matrix strategy28 used several different

combinations of two or three matrices. The sets of matrices were selected to provide an
efficiency of at least 0.9 over the entropy range of about 0.25 to 4.0. The efficiency of
using one matrix R to score MSPs that are actually modeled by a different matrix C was
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estimated as the entropy using scores from R and frequencies from C divided by the
relative entropy of C, which is computed using both scores and frequencies from C27.

Sets of matrices were selected from the MDM78, JTT, BLOSUM and INTERVAL
series. In addition, we tried hybrid sets to extend the range of the BLOSUM series, which
achieves a maximum entropy of 1.45.

For each set of three matrices, BLASTP searches were done for the 257 most
challenging groups with the default E=10 and again with E=3.33 as a "tax" for combining
the results of the three searches. A true positive was considered "found" if it appeared in
the results of any of the three searches. For each set of two matrices, the approach was
the same, except searches were done with a "tax" of E=5.

The results for each set of matrices were compared with the middle matrix in the
set and with the single best matrix overall, BLOSUM 62. The number of groups for which
the set found more true positive sequences than BLOSUM 62 was counted, and vice
versa.

Implementation
Software developed or adapted for this study was written in the standard C

programming language and was compiled for SUN Sparcstation computers. Matrices,
query lists and program code are available from the authors by ftp over the Internet.
Contact henikoff@sparky.fhcrc.org.

RESULTS
Evaluation of matrix performance using BLAST

Given a query sequence, a database and an amino acid substitution matrix, the
BLAST algorithm scores ungapped alignments that fulfill heuristically determined criteria3.
In our previous study23, the default heuristic was that in order to be scored, an alignment
must include a segment of 4 amino acids [word size (W) = 4] that exceeds a certain
threshhold score (T), with T adjusted to take into account query and database size and
the matrix. In addition, BLAST results are ranked based on statistical significance in the
context of the search, so that the program reports all alignments achieving at least a
certain level of significance measured in terms of an expected value, E32. In our previous
study, the default level was E=25. For this study, we used a new version of BLAST with
different defaults: W was reduced to 3, T was reduced to a lower value for a given W, and
E was reduced to 10. The lower threshhold increases sensitivity, while the more stringent
expected value increases selectivity. In addition, the new version combines multiple
MSPs; this may result in a sequence being reported even if some of these MSPs
individually score below the default expected value. This feature should increase
sensitivity, since similarities to a query that are scattered throughout a sequence can
contribute to the combined score.

Using this new version of BLAST, we carried out searches with queries from each
of the 560 non-redundant groups found in the Prosite 9.0 catalog15 and with several
different substitution matrices. Performance was measured in pairwise comparisons
between matrices, so that a matrix was judged to be better for a group if BLAST reported
more true positive sequences using that matrix than when using the competing matrix.
When each test matrix was compared with BLOSUM 62, the results of searches using
these 257 second queries were approximately the same overall as those using the 560
first queries (Fig. 2). Therefore, conclusions drawn from these data are independent of the
choice of query.
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The best tested matrix overall was BLOSUM 62, in agreement with our previous
results23. Performance peaked for all series at H?0.7 (BLOSUM 62, JTT PAM 150 and
MDM PAM 160). For example, BLOSUM 62 (H=0.7) performed better than either
BLOSUM 50 (H=0.48), or BLOSUM 80 (H=1.0). Also as shown previously, all BLOSUM
matrices tested were superior to matrices with comparable relative entropies based on the
PAM model (Fig. 2). This includes the widely-used MDM78 PAM 250 matrix and the MDM78

PAM 120 matrix which is the default for BLAST. For example, at H?0.7, BLOSUM 62
performed much better than either the JTT PAM 150 from Jones and co-workers26 or the
MDM78 PAM 160. Furthermore, all matrices from the JTT series were clearly better than
their MDM78 counterparts. For example, using the second query, JTT PAM 150 was better
than MDM78 PAM 160 for 81 groups and was worse for 30 groups. The single available
matrix from Gonnet and co-workers25 was a poor performer in these tests, as shown
previously23. However, the STR matrix from the data of Overington and co-workers30

performed much better than any of the matrices based on the PAM model. This matrix
performed as well as the mathematically comparable BLOSUM 80, though somewhat
worse than BLOSUM 62. So, in spite of important changes in the BLAST program and
defaults, our previous conclusions are confirmed; that matrices derived directly from
alignments of distantly related proteins perform better than those derived by extrapolation
from alignments of closely related proteins.

Evaluation of performance using FASTA
FASTA was also used for evaluation of matrix performance. Results with the 257

challenging queries identified in the BLAST tests are shown in Fig. 3. In general, these
results are similar to the BLAST results shown in Fig. 2. BLOSUM 62 is still the best matrix
tested, with the other BLOSUM matrices and the STR matrix performing better than their
counterparts based on the PAM evolutionary model. As with BLAST, all performed better
overall than the simple +6/-1 control matrix.

In spite of overall similarities between the BLAST and FASTA results, the
performance disparities between matrices were smaller using FASTA. This is likely to be
due, at least in part, to the Pearson detection criteria that a database hit must be within
the top 0.5% of scores22. In comparison, BLAST using E=10 typically reports fewer
results. So sequences that are not reported using BLAST because they fail to achieve a
statistically significant score might still be reported using the Pearson detection criteria. It
is also possible that FASTA at ktup=1 is generally more sensitive to detection of true
positive alignments than is BLAST, so that fewer sequences are missed overall. Another
possibility is that the initial requirement for exact matches in FASTA screens out some
challenging MSPs that BLAST can detect with an accurate (but not an inaccurate) matrix
because exact matches are not required.

Another difference between BLAST and FASTA results is that the matrices with
relative entropy of about 0.36 performed better using FASTA than matrices in the series
with relative entropies of about 0.48. This appears to be a FASTA anomaly, because
performance improves again as relative entropy increases to 0.7. It seems likely that this
anomaly is a consequence of the influence of the substitution matrix on other parameters
(e.g. the "joining penalty") that were not changed or scaled to the substitution matrix in our
tests. Since FASTA was implemented and tested using the MDM78 PAM 250 matrix
(H=0.36), other parameters might have been set to maximize performance with this
matrix.
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Sequence-by-sequence comparisons
An alternative way to compare matrix performance is possible with BLAST. The

statistical significance of an alignment between the query and each true positive
sequence provides a quantitative measure of how well the alignment compares with
chance alignments estimated from the distribution of search results. All MSPs contributing
to the statistical significance of an alignment are reported with a combined Poisson P-
value. The better of two matrices should report a lower P-value for detection of a true
positive sequence by a query. This method of comparison should be more informative
than that in which the criterion is simply the number of sequences detected, as illustrated
with an example (Fig. 4). Based on BLAST detection criteria, the query MTG1_HAEGA
detects 7 true positive sequences using BLOSUM 62 not detected using MDM78 PAM 160
and 2 sequences using MDM78 PAM 160 not detected using BLOSUM 62. When the P-
values are graphed for all sequences detected using one or the other matrix (lines in Fig.
4), it can be seen that the performance disparity is more striking. Of the 24 sequence
reported in either or both searches, use of BLOSUM 62 led to lower P-values in 20 cases
(solid lines slanted to the right in Fig. 4 upper panel), while use of MDM78 PAM 160 led to
lower P-values only in the 2 cases that BLOSUM 62 failed to report (stippled lines slanted
to the left). For the corresponding comparison between BLOSUM 62 and JTT PAM 150,
each search reported 3 sequences not reported in the other search. However, a
comparison of P-values breaks this tie; of the 25 sequences reported in either or both
searches, use of BLOSUM 62 led to lower P-values in 15 cases, while use of JTT PAM
150 led to lower P-values in only 6 cases (Fig. 4 lower panel).

In comparing two matrices, we used P-values to determine relative performance
for each of the 257 most challenging groups. Only those true positive hits for which the
difference in P-values was greater than 10-3 were counted. For these tests, we limited
comparisons to matrices with approximately similar relative entropies in the 0.36-1.45
range (Fig. 5). In confirmation of previous results, the BLOSUM matrices were superior
overall and the STR matrix performed nearly as well. Matrices based on the PAM
evolutionary model were again much worse, although the JTT matrices were still clearly
improved over the MDM78 series. In addition, an interesting regularity was revealed. The
superiority of the BLOSUM series was most evident for the lower entropy (more distant)
matrices in comparison to the JTT or the MDM78 series. This superiority became less
pronounced for higher entropy (less distant) matrices. This improvement is consistent with
the notion that distant extrapolation results in matrix inaccuracy. So extrapolation of the
Dayhoff mutation rates to 250 PAMs gives very poor performance relative to a
mathematically comparable BLOSUM matrix, whereas extrapolation to only 80 PAMs
gives somewhat better performance (Fig. 5). The same trend is seen with the JTT series.
As in the previous tests, GCB matrix performance was comparable to that of the JTT
matrix with relative entropy of about 0.4, consistent with the fact that the GCB matrix is a
distant extrapolation based loosely on the PAM evolutionary model. In contrast, the STR
matrix based directly on structural alignments performs about as well as matrices in the
BLOSUM series.

The reduced performance of extrapolated matrices at greater evolutionary
distances compared to their BLOSUM counterparts parallels their relative efficiencies28

(Fig. 6). Both the JTT and MDM78 matrices become less efficient relative to their BLOSUM
counterparts for more distant extrapolations (smaller H). It is interesting that the STR
matrix, which performs very well, shows only slightly higher efficiency relative to the
BLOSUM standard than the corresponding JTT matrix. Reduced efficiency of the JTT and
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MDM78 matrices relative to BLOSUM probably corresponds to inaccurate scoring of
distant alignments, whereas reduced efficiency of the STR matrix relative to BLOSUM
might correspond to accurate scoring of distant alignments that are less well represented
by the BLOSUM model. The efficiencies plotted in Fig. 6 suggest the potential
improvement BLOSUM matrices can provide at various relative entropies.

Performance differences are not attributable to group differences
The performance results involving two distant queries from 257 protein groups can

be used to ask whether there is any evidence for group specificity of a matrix. For
example, based on P-value differences, BLOSUM 62 performed better than MDM78 PAM
160 for 161 of the 257 groups, whereas MDM78 PAM 160 performed better than BLOSUM
62 for 25 groups (Fig. 5). One explanation is that BLOSUM 62 is more accurate than
MDM78 PAM 160 for these particular 161 groups, and MDM78 PAM 160 is more accurate
than BLOSUM 62 for the 25 groups. Alternatively, BLOSUM 62 might be more accurate
overall, and it only does worse for the 25 groups because of chance. To distinguish
between these alternatives, we asked whether there was any correlation between query
1 and query 2 results for the 257 common groups. That is, if BLOSUM 62 is more accurate
than MDM78 PAM 160 for a particular group, then it should perform better for that group
using both queries, and vice-versa. Alternatively, if BLOSUM 62 is more accurate overall
than MDM78 PAM 160, then performance using two dissimilar queries is not expected to
be correlated for a particular group.

For each group, the difference between the number of sequences scored higher
by one matrix and the number scored higher by another matrix was plotted for query 1 on
the x-axis and query 2 on the y-axis. A scatter plot representing these differences is
expected to form a circular cloud of points if there is no correlation, with the cloud
flattening at a 45o angle as correlation increases. Comparisons were made between three
comparable JTT and MDM78 matrices (Fig. 7 upper panels) and between the
corresponding BLOSUM and MDM78 matrices (Fig. 7 lower panels). Each comparison
between JTT and MDM78 matrices showed a slightly flattened cloud and a regression line
with positive slope, even though the JTT series is an update based on the PAM model,
which mainly corrects inaccuracies caused by insufficient data in the MDM78 dataset24.
Here, better performance of the JTT series over the MDM78 series is attributable to better
overall accuracy, not group specificity. The weak correlations can be accounted for by the
limited sequence similarity between query 1 and query 2 in each group. Similar weak
correlations were also seen for comparisons between BLOSUM and MDM78 series
matrices (Fig. 7 lower panels). Since weak correlations of this magnitude are expected
from sequence similarities between query 1 and query 2, there is no evidence for group
specificity. Rather, it appears that the performance of a matrix for a group is predictable
from the performance of that matrix for all groups.

BLAST searches using multiple matrices
A set of matrices can be used in combination to detect alignments at all

evolutionary distances. The set can be chosen such that for each MSP length, the
efficiency of one matrix exceeds a certain percentage of the optimum for that length28.
Altschul estimated that for protein database searching, 93% is a sufficient minimum
efficiency level27. For a three matrix (3-mat) set, one matrix would efficiently score MSPs
in the most frequently represented range of lengths, a higher entropy (or less distant)
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matrix would efficiently score shorter MSPs, while a lower entropy (more distant) matrix
would efficiently score longer MSPs. For the MDM78 series, Altschul recommended PAM
30 (93% efficiency for MSP lengths of 7-19 aa), PAM 120 (19-50 aa) and PAM 250 (50-
126 aa) as a potentially useful 3-mat set28. We tested this set, along with sets from other
series chosen to fulfill the 93% efficiency criteria. For the JTT series, the set that consists
of PAM 50+150+270 covers a comparable range of MSP lengths with comparable
efficiencies. Since no high entropy matrix is available for the BLOSUM series that fulfills
the 93% efficiency criteria, we tested a set with a higher efficiency (97%), consisting of
BLOSUM 45+62+100. We also constructed a set of three INTERVAL matrices fulfulling
the 93% efficiency criteria (INTERVAL 0-24%, 24-40% and 40-100%).

One type of comparison was between a 3-mat set and the middle matrix, such as
MDM78 PAM 30+120+250 versus MDM78 PAM 120 (Fig. 8 top left). In this case, 3-mat was
a slight improvement over PAM 120, even when a tax was imposed for combining results
of 3 searches. However, in all other cases, the middle matrix alone was better than 3-mat.
For the JTT series, PAM 150 slightly outperformed PAM 50+150+270, for the INTERVAL
series, the middle matrix slightly outperformed the 3-mat set, and for the BLOSUM series,
BLOSUM 62 strongly outperformed BLOSUM 45+62+100. The degree of performance of
the middle matrix relative to the 3-mat set follows that of the middle matrices relative to
one another: BLOSUM 62 > INTERVAL 24-40% ? JTT PAM 150 > MDM78 PAM 120 (Figs.
2, 3, 5 and data not shown). Our interpretation is that an inaccurate middle matrix provides
more opportunity for flanking matrices to detect additional true positive alignments. So,
the inaccuracy of MDM78 PAM 120 exacerbates its inefficiency in scoring alignments close
to the edges of its targeted range. However, the higher inherent accuracy of BLOSUM 62
makes it more accurate near the edges of its range, so fewer undetected true positive
alignments are available for flanking matrices to report. Comparisons of the different 3-
mat sets to BLOSUM 62 are consistent with this interpretation, in that all do worse relative
to BLOSUM 45+62+100 (Fig. 8 top middle), even for hybrid matrices that include
BLOSUM 62 as the middle matrix (Fig. 8 top right and data not shown). This would be the
case if all BLOSUM matrices are more accurate in BLAST tests than are the
corresponding matrices in each of the other series.

A much better result was seen when the STR matrix was used as a middle matrix
of a hybrid 3-mat series. The best such 3-mat series included BLOSUM 45 and BLOSUM
100 as flanking matrices, with performance that was somewhat worse than that of
BLOSUM 62 alone, but better than any 3-mat set tested that did not include the STR
matrix (Fig. 8 top right). This hybrid 3-mat set performed better than the 2-mat
combination of the STR matrix and BLOSUM 62 (data not shown). To some extent,
improvement of this hybrid 3-mat over BLOSUM 45+62+100 might be an artifact of
imposing the same tax for combining 3 sets of search results. Since matrices in the same
series have more in common than a corresponding hybrid set, the tax should be lower (S.
Altschul, personal communication). Nevertheless, the relatively good performance of this
hybrid 3-mat set recommends it for applications in which a multiple matrix strategy is
advantageous.

DISCUSSION
Extrapolated matrices perform poorly

In sequence alignment applications, choices are made between competing
alignments based on the sum of scores over all aligned positions. As pointed out by
Altschul, any matrix of values used for scoring alignments is a log-odds matrix, even when
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the model underlying these scores is not based on observed substitutions27. The model
underlying a matrix might be implicit, such as for a simple unitary matrix in which the odds
are the same for all matches in correct alignments, as are the odds for all mismatches.
The model might be explicit, such as for the PAM evolutionary model in which log-odds
scores are extrapolated from substitution rates estimated from alignments of closely
related proteins24. These extrapolated log-odds matrices have become the standard in
searching and alignment programs. However, most alignment applications depend upon
accurate alignment of the most highly conserved regions of proteins; these are not
explicitly represented in the PAM model. Previously, we investigated an explicit model in
which log-odds scores derive directly from ungapped blocks representing the most highly
conserved regions of proteins23. Our BLOSUM matrices outperformed mathematically
comparable matrices based on the PAM evolutionary model. In the more comprehensive
evaluation of matrix performance reported here, our previous results are confirmed and
extended. The single best matrix from that study, BLOSUM 62, was still the best matrix in
more sensitive BLAST tests, a result confirmed using FASTA. Overall improvement
relative to MDM78 PAM 120, the BLAST default, was again found to be quite substantial,
comparable to the improvement of MDM78 PAM 120 relative to a simple unitary matrix. In
addition, we found that a matrix derived directly from the structural alignments of
Overington and co-workers30 also performed well relative to the extrapolated matrices
based on the PAM model. Like the BLOSUM matrices, the STR matrix is not based on an
evolutionary model.

We also presented evidence that improved performance in our tests reflects higher
accuracy in scoring distant alignments. The performance of matrices based on the PAM
evolutionary model was found to deteriorate with increasing evolutionary distances,
suggesting that extrapolation is an inaccurate means of modeling distant relationships.
Deterioration with extrapolation was seen both for matrices based on the 1978 MDM78

dataset and for those based on the more accurate JTT dataset. Furthermore, using two
queries from each group, we were unable to find convincing correlations attributable to
improvements in group-specific performance. The lack of detectable group specificity
contradicts the intuitive notion that group-specific matrices might be beneficial33. In fact,
group-specific matrices based on the BLOSUM model perform poorly relative to BLOSUM
62 in detecting members of the same group (unpublished results).

A potential bias in this analysis is that it employed the same PROSITE 9.0 groups
that were used to make the Blocks Database from which the BLOSUM series was derived.
To an extent, this concern is addressed by our method of choosing queries, in that
preference was given to any sequence that was excluded from the Blocks Database. In
addition, we have tested the 65 new groups present in PROSITE 10.0 but not in PROSITE
9.0. These groups do not contribute to the BLOSUM series, although some of them might
have contributed to the GCB, JTT or STR matrices. The results of BLAST tests using 65
first queries and 20 second queries (data not shown) are very similar to those presented
in Figures 2 and 5. For example, in the sequence-by-sequence comparisons for 257
second queries shown in Figure 5, BLOSUM 45 was better than MDM PAM 250 in 170
groups and worse in 19 groups, whereas for the 20 new second queries, BLOSUM 45 was
better in 14 groups and worse in one group.

We conclude that for scoring local alignments in searching applications, the PAM
evolutionary model is inadequate. While our comprehensive tests were limited to local
alignment programs, our conclusions are likely to hold for other applications in which it is
important to favor correct alignment of the most highly conserved regions of proteins. In
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these cases, the best performing matrix is BLOSUM 62.
The STR matrix used in these tests shows many differences from matrices in the

BLOSUM series. For example, relative to BLOSUM 62, the STR matrix favors matches
between hydrophobic residues (M, I, L, V and F) and disfavors mismatches between
hydrophobic and hydrophilic residues (Fig. 1, top). A likely basis for these differences is
that BLOSUM represents alignments in conserved regions, whereas the STR matrix
includes alignments of more mutable regions that a sequence-based method cannot
accurately align. Therefore, it is possible that the STR matrix might be a good choice for
applications in which alignment of more mutable regions is important, such as for globally
aligning homologous proteins. Unfortunately, any evaluation of this possibility is likely to
be severely complicated by the necessity for gap penalties in such applications. Since
gaps are far more frequent in mutable than in conserved regions, inaccurate gap penalties
could override any improvement gained from the use of an accurate substitution matrix.
Comprehensive evaluations of gap penalties, perhaps aided by parallel implementation
of a local dynamic programming algorithm6 are needed. Meanwhile, any one of the
accurate matrices tested here is likely to suffice for aligning mutable regions.

For the construction of evolutionary trees based on protein sequence data, the
PAM model seems appropriate (assuming that the extrapolations are not too distant). For
these applications, the JTT series should be used, since it proved to be more accurate
than the widely-used MDM78 series in our local alignment tests. While it is possible that
the more elaborate approach of Gonnet and co-workers25 can provide useful matrices for
evolutionary applications, our tests failed to show that the published GCB matrix provided
any improvement over a comparable matrix from Jones and co-workers26.

Recommended matrices for a multiple matrix strategy
We also attempted to evaluate a multiple matrix strategy by combining BLAST

search results for three different matrices. Our particular 3-mat implementation proved to
have no practical advantage over using BLOSUM 62. There were too few true positive hits
that were missed by BLOSUM 62 but detected by one of the flanking matrices to
overcome the tax imposed to compensate for the longer list of results. However, in the
absence of the tax, several 3-mat sets detected true positives in a large fraction of the
groups that were not detected by a single matrix (Fig. 8 bottom). Therefore, a different
implementation that avoids the tax might be advantageous. For example, high scoring hits
from a search using the middle matrix can be rescored using the flanking matrices28. In
this way, a true positive alignment that is scored inefficiently by the middle matrix can be
promoted without significantly increasing the background of false positives. This strategy
is analogous to that implemented in the BLAST3 multiple alignment searching program34.
Another possible way that an multiple matrix strategy might be useful is where biological
clues are available but are not represented in the sequence per se. For instance, if the
function of the query is known or suspected, an interesting relationship might be
uncovered by screening database hits of marginal statistical significance. Both possible
strategies should profit from using the best 3-mat combination identified here, a hybrid
consisting of the STR matrix flanked by BLOSUM 45 and BLOSUM 100. This matrix set
should efficiently score true positive alignments over a broad range of MSP lengths. Since
BLOSUM 45+62+100 might have been too heavily taxed in our tests, this 3-mat set could
be an alternative choice.
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Evaluation methodology
The BLAST searching program3 is well suited for evaluating amino acid

substitution matrices. BLAST is sufficiently fast that hundreds of database searches can
be carried out per day on an ordinary desktop computer. Unlike other searching programs
that achieve speed using a hash table, the BLAST hash table consists of substitution
matrix scores rather than exact matches, a feature that probably contributes to its
sensitivity to matrix accuracy. Furthermore, BLAST results lists based on Poisson P-
values provide quantitative measurements of how well true positive hits score relative to
the expected distribution of true negatives. In contrast, choosing an arbitrary percentile
rank as was done with FASTA (Ref 22 and Fig. 3), provides only approximate evaluation
of true positive detection that is relatively insensitive to the distribution of true negatives.
Also, unlike searching programs that insert gaps35 or that link diagonals2, BLAST does not
employ gap penalties, so that the only externally provided parameters that are necessary
are present in the substitution matrix. Gap penalties can cause complications because it
is not clear just how they should be chosen or scaled relative to substitution scores for any
particular application. For example, we detected an anomaly in our FASTA tests that
might have occurred because the gap penalties were held constant for different
substitution matrices. Presumably, these problems occurred because gap penalties were
chosen to maximize performance relative to the MDM78 PAM 250 matrix and other
program parameters. In spite of these complications, FASTA results were similar to those
using BLAST, with BLOSUM 62 outperforming MDM78 PAM 250, the FASTA default.
Therefore, it is likely that FASTA parameters and gap penalties can be adjusted for even
better performance using BLOSUM 62.

While this study was confined to evaluating substitution matrices, our approach
should be more generally applicable. For example, sequence filters designed to remove
high entropy sequence segments36,37 can be evaluated using the same programs and
Prosite-derived lists developed for this study. We anticipate that comprehensive and fully
objective evaluation procedures will replace the anecdotal tests that frequently
accompany new searching and alignment tools.

CONCLUSION
Major improvements are possible using substitution matrices based directly on

alignments representing distant relationships rather than those based on extrapolations
from mutation rates. These overall improvements can be more substantial than
performance differences among currently popular searching and alignment programs23,38.
In contrast to the major effort that is often required to implement searching programs,
sometimes involving expensive parallel hardware4,5,6,39, changing a substitution matrix
requires only trivial effort. Nevertheless, an inaccurate extrapolated matrix introduced 15
years ago is the current default for most searching and alignment programs. These
programs are used by biochemists, geneticists and molecular biologists who typically are
not aware that the inferences they draw might very much depend upon the choice of
substitution matrix. These users are rarely given a choice. The comprehensive
evaluations presented here argue for a change in the status quo.
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Fig. 1. STR matrix from structure-based alignments30 (lower) and difference
matrix (upper) obtained by subtracting the BLOSUM 62 matrix position by position.

Fig. 2. BLAST performance using two dissimilar queries from each group.
Results for each test matrix compared to BLOSUM 62 are shown above with the relative
entropy for each test matrix plotted below. The matrix series is indicated at the top. BLOS
matrices are (left to right) BLOSUM 45, 50, 62, 80, 100; JTT matrices are JTT PAM 220,
190, 150, 110, 80; MDM matrices are MDM78 PAM 250, 210, 160, 120, 80. The number
of groups for which BLOSUM 62 detected more true positives than the test matrix
(BLOSUM 62 > Test) is shown by the bars above the 0 line, and the number for which the
test matrix detected more (Test > BLOSUM 62) is shown below the 0 line. There are no
differences when BLOSUM 62 (H=0.70) is the test matrix. Search results using query 1
for 560 groups are indicated by open bars and those using query 2 for 257 groups are
indicated by by superimposed shaded bars. The close correspondence between the open
and shaded bars reflects very similar overall results for the two sets of queries.

Fig. 3. FASTA performance using 257 second queries. Matrix series and
performance criteria are as indicated in the legend to Fig. 2.

Fig. 4. BLAST search results using MTG1_HAEGA, a member of the C5

methyltransferase family (Prosite PS00094), as query of SWISS-PROT 22. Poisson P-
values of individual family members are plotted on a logarithmic scale along the top axes
for BLOSUM 62 (BLOS 62), along the bottom axis of the top panel for MDM78 PAM 160,
and along the bottom axis of the bottom panel for JTT PAM 150. Relative performance of
two matrices is evident from the slope of the lines connecting points for each family
member. Lines originating at the far left are those not reported by BLAST (P>.9999). Solid
lines slanting right represent sequences detected at a lower P-value for BLOSUM 62 than
for the other matrix, whereas stippled lines (slanting left) represent sequences detected
at a higher P-value for BLOSUM 62.

Fig. 5. BLAST search results based on P-value differences for 257 second
queries. Each bar represents the number of groups for which BLAST reported a higher
Poisson P-value for one matrix relative to another matrix for matrices of similar relative
entropy. BLOSUM matrices are (left to right) BLOSUM 45, 62, 80, 100; JTT matrices are
PAM 220, 150, 110, 80; comparable MDM78 matrices are PAM 250, 160, 120, 80.

Fig. 6. Efficiency plots for matrices based on different models and datasets
relative to the corresponding matrices based on the BLOSUM model as a function of
relative entropy. JTT series (?), MDM78 (•) series and the single STR matrix compared to
BLOSUM 80 (♦). Relative entropy increases with decreasing evolutionary distance
measured in PAMs, so that for the MDM78 series, PAM 250 is to the left and PAM 80 is to
the right.

Fig. 7. Scatter plots representing P-value comparisons (e.g. Fig. 5) between
pairs of matrices. BLAST was used with two queries from each of the 257 Prosite groups
searched. For query 1 (x-axis) and query 2 (y-axis), a single point is shown that represents
the number of sequences detected at a lower P-value for the first matrix (e.g. JTT PAM
220 in the upper left panel) than for the second matrix (e.g. MDM78 PAM 250 in the upper
panel). The linear regression line is shown for each set (generated by the xvgr program
from Paul Turner). In each of the lower panels, a single point in the upper right quadrant
is not shown because for one of the queries more than 100 sequences obtained lower P-
values for the BLOSUM matrix than for the corresponding MDM78 matrix.

Fig. 8. 3-mat performance for 257 second queries. Each comparison shows
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the number of groups for which a single matrix detected more true positives at E=10 than
a 3-mat set at E=3.33 (top). The same comparisons are also shown using E=10 for both
the single matrix and 3-mat (bottom). The set of bars on the left shows comparisons
between each 3-mat set and the middle matrix of the set. Single series matrices are (left
to right): BLOSUM 45+62+100 (BLOS), INTERVAL 0-24% + 24-40% + 40-100% (INT),
JTT PAM 50+150+270 (JTT), MDM78 PAM 30+120+250 (MDM). Hybrid matrices are
INTERVAL 0-24% + 40-100% + BLOSUM 62(INT-BLOS), JTT PAM 50+220 + BLOSUM
62 (JTT-BLOS), MDM78 PAM 30+250 (MDM-BLOS) + BLOSUM 62, BLOSUM 45+100 +
STR (BLOS-STR). Comparisons between each 3-mat set and BLOSUM 62 for the same
3-mat sets are shown by the middle set of bars and for hybrid 3-mat sets are shown for
the set of bars on the right.
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                             Figure 3
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                               Figure 4
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                             Figure 6
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                               Figure 7
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                             Figure 8
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